Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday

TERNARY MOLYBDENUM(III) CHLORIDES

F. Beier and H. J. Seifert

Inorganic Chemistry, University Gh Kassel, Germany

Abstract

The phase diagrams of ACl/MoCl₃ (A=Na, K, Rb, Cs) were elucidated by DTA measurements in sealed quartz ampoules in the range of 0–40 mol% MoCl₃. The samples were prepared from alkali metal chlorides and the compounds A₃MoCl₆ or A₃Mo₂Cl₉. The 3:1 compounds with A=Na, Rb, Cs were obtained by sintering mixtures of 3ACl+MoCl₃; the enneachlorides A₃Mo₂Cl₉ with A=K, Rb, Cs were precipitated from solutions of MoCl₃·3H₂O and ACl in formic acid. Congruently melting compounds A₃MoCl₆ exist in all four systems, incongruently melting enneachlorides A₃Mo₂Cl₉ in systems with A=K, Rb, Cs. Still unknown structures were determined by analog-indexing powder patterns according to known structure families. Especially Cs₃MoCl₆ is isotypic with the recently found Cs₃CrCl₆ structure. Additionally, the unit cell parameters were determined for the compounds A₃MoCl₅·H₂O (A=K, Rb, Cs) analogous to Cs₂TiCl₅·H₂O, whose structure was determined by single crystal measurements.

Keywords: crystal structures, phase diagrams of systems ACl/MoCl₃ from 0–40 mol% MoCl₃, preparation of A₃Mo₂Cl₉ from formic acid

Introduction

Within the scope of our work on ternary chlorides in pseudobinary systems ACl/MCl₃ (A=alkali metal Na–Cs), we have investigated during the last years, in addition to lanthanide systems with M=La–Er [1] also systems with the light transition metals chromium and iron [2]. The systems with TiCl₃ [3] and VCl₃ [4] were already known and described in the literature. The radius of the biggest transition metal ion Ti³⁺ is 0.67 Å [5], the radius of Er³⁺ is 1.03 Å. It was now of interest for us, to extend our investigations to Mo³⁺ whose radius of 0.69 Å is between that of titanium and the smallest lanthanide ion.

A comprehensive description of the properties of MoCl₃ is given by Schäfer and Schnering [6]: Red crystals, crystallising in the AlCl₃-type structure (space group C2/m; layer structure with a cubic dense Cl⁻-packing). A β -modification (hexagonal Cl⁻-packing) is non-stoichiometric with a composition of MoCl_{3.08}. At 500°C a disproportionation begins:

0368–4466/97/ \$ 5.00 © 1997 Akadémiai Kiadó, Budapest John Wiley & Sons Limited Chichester $2MoCl_3 \rightarrow MoCl_{2(s)} + MoCl_{4(g)}$

It is complete after 4 h at 600°C. MoCl₃ is insoluble in water and hydrochloric acid. These properties have consequences for the investigation of the systems ACl/MoCl₃. Areas in the phase diagrams containing free MoCl₃ cannot be measured at temperatures higher than 500°C, because there multi-component systems exist with at least MoCl₂ present. Furthermore, e.m.f.-measurements in a newly constructed H₂/HCl-cell gave no constant potential. For DTA-investigations the ternary compounds A₃MoCl₆ or A₃Mo₂Cl₉ were used, if possible. Because of the insolubility of MoCl₃ and its ternary Rb- and Cs-chlorides in water, no solution enthalpies could be measured.

Thus, methods for the preparation of anhydrous ternary chlorides, measurements of the phase diagrams $ACl/MoCl_3$ (A=Na-Cs) containing up to 40 mol% $MoCl_3$ and crystallographic investigations are described in this paper.

Experimental

Substances

MoCl₃ was prepared according to [6] by reduction of MoCl₅ with Mo-metal in a sealed glass tube at 500°C. The product was washed twice with anhydrous alcohol, then with anhydrous diethylether and was finally dried in vacuum at 90°C. The alkali metal chlorides (p.a. quality; Merck, Darmstadt) were dried by melting in a quartz tube in vacuum. Solutions of Mo³⁺ were prepared by electrolytic reduction of 1 mol l⁻¹ solutions of MoO₃ in hydrochloric acid. The reduced solution was evaporated nearly to dryness at 20 mbar and 95°C. The dark red oil obtained was further evaporated at 0.02 mbar and 60°C for 8 h to a copper-coloured, amorphous product, foamy and extremely hygroscopic.

Analyses gave a Cl/Mo ratio of 2.81, the oxidation state of molybdenum was found to be 3.04. Thus it must be assumed that partially hydrolysed $MoCl_3 \cdot 3H_2O$ was formed.

MoCl₅ was prepared from the elements as described in Brauer [7].

Acetic acid was treated with P_2O_5 for 4 h at boiling temperature followed by distillation at 118–119°C.

Formic acid (99-100%) was used without further treatment.

Molybdenum was determined by precipitation of molybdate with 8-hydroxyquinoline acetate [8]. Oxidation state determinations were done by cerimetric titration in sulphuric acid solutions, the titration end point was indicated potentiometrically and with ferroin.

Chloride was determined by potentiometric titration with AgNO₃.

X-ray investigations

Powder patterns were taken with a Philips PW 1050/25 goniometer equipped with a proportional counter and a vacuum attachment. During exposure (CuK_{α}

radiation) the samples were under He atmosphere. The digital data were collected and analyzed with PROFIL [9]. The calculations were performed with the program LAZY PULVERIX [10]. For high-temperature photographs a Simon-Guinier camera was used. For the determination of cell parameters from powder patterns corundum (α -Al₂O₃, a=475.92 pm; c=1299.00 pm) was used as internal standard. Calculations were done using the least squares method of Warczewski and de Wolff [11].

Differential thermal analysis (DTA)

The DTA measurements were performed in a home built device with the samples (1 g) in vacuum-sealed quartz ampoules. If necessary, the material could be annealed after melting with a gas flame and homogenizing by shaking and quenching. In general, heating curves were measured (heating rate 2 K min⁻¹). Calibration of temperature: *m.p.* Zn=379°C, *t.p.* K₂SO₄=583°C.

Results

Preparation of ternary Mo(III)-chlorides

From aqueous solutions

For all preparations from aqueous solutions an electrolytically reduced 1 mol l^{-1} solution of Mo(III) in hydrochloric acid was used. After addition of aqueous solutions of ACl (*A*=K, Rb, Cs) the hydrates A₂MoCl₅·H₂O were crystallized [12]. The yield could be improved by a slight evaporation. K₃MoCl₆ [7] was obtained by evaporation under permanent saturation with HCl (gas).

 $Cs_3Mo_2Cl_9$ was formed according to Nyholm [13]: a MoCl_3-solution was boiled down to viscous consistency and mixed with small amounts of a CsCl-solution in hot 10 mol l⁻¹ hydrochloric acid. Rb₃Mo₂Cl₉ was prepared analogously.

From anhydrous acetic acid

Dissolving MoCl₅ in acetic acid yields a green solution containing Mo(IV); ClCH₂COOH is assumed as the oxidation product. From these solutions Cs₂MoCl₆ and Rb₂MoCl₆ could be precipitated by adding solutions of Cs- and Rb-acetate, respectively, in acetic acid and saturation with HCl (gas).

Attempts to reduce solutions of Mo(IV) electrolytically to Mo(III) failed because of the too low conductivity.

From anhydrous formic acid

Amorphous $MoCl_3 \cdot 3H_2O$ was dissolved in formic acid saturated with HCl. By adding solutions of alkali metal chlorides in formic acid, compounds $A_3Mo_2Cl_9$ (*A*=K, Rb, Cs) precipitated. Yield: 40–70%

Fig. 1 Phase diagrams of the systems ACl/MoCl₃ (A=Na, K, Rb, Cs)

Preparation of K₃Mo₂Cl₉

0.005 mole of MoCl₃·3H₂O were dissolved in 20 ml formic acid saturated with HCl and then the equivalent amount of solid KCl was added. This mixture was quickly brought to the boil while HCl was bubbled through. On cooling, K₃Mo₂Cl₉ was crystallized. The product was washed with small amounts of the cold solvent, twice with diethylether and then dried in vacuum at 90°C. Brown crystals were obtained which became pink after grinding.

Phase diagrams

Because of the decomposition of $MoCl_3$ above $500^{\circ}C$, mentioned in the introduction, the phase diagrams could be investigated by heating and cooling curves only in the range of 0–40 mol% $MoCl_3$. They are shown in Fig. 1.

If available, mixtures of ACl and the ternary compounds $A_3Mo_2Cl_9$ or A_3MoCl_6 were used. The compounds A_3MoCl_6 (A=Na, Rb, Cs) were prepared by sintering pellets of $3ACl+MoCl_3$, all other products were obtained by precipitation. The incongruent melting points of compounds $A_3Mo_2Cl_9$ were determined from solid samples, sealed into quartz ampoules.

The phase diagrams of the systems NaCl/MoCl₃ and KCl/MoCl₃ have been determined earlier: In the sodium system Ryabov *et al.* [14] found Na₃MoCl₆ using α - or β -MoCl₃, with β -MoCl₃ they additionally found Na-MoCl₄. According to Ryabov *et al.* [15] the potassium system shows, besides K₃MoCl₆ (congruently melting at 873°C) and the incongruently melting K₃Mo₂Cl₉ (peritecticum at

Compound	Spacegr.	Ζ	a/pm	b/pm	c/pm	β/°
L-Cs ₃ MoCl ₆	Pnnm	6	2317.9(5)	1131.1(2)	752.2(2)	
H-Cs ₃ MoCl ₆ *	Fm3m	4	1126.6(2)			
L-Rb ₃ MoCl ₆	C2/c	8	2531.8(7)	753.1(2)	1251.2(4)	100.07(5)
H-Rb ₃ MoCl ₆ *	Fm3m	4	1089.6(2)			
L-K ₃ MoCl ₆ [19]	$P2_1/c$	4	1216.0(8)	753.4(3)	1273.1(6)	108.66(1)
H-K ₃ MoCl ₆ *	Fm3m	4	1062.7(1)			
Na ₃ MoCl ₆	P3lc	2	658.2(1)	658.2(1)	1221.6(2)	120
Cs ₂ MoCl ₅ ·H ₂ O	Pnma	4	1437.0(4)	1019.5(2)	736.3(2)	
Rb ₂ MoCl ₅ ·H ₂ O	Pnma	4	1393.9(4)	992.4(3)	720.4(2)	
K ₂ MoCl ₅ ·H ₂ O	Pnma	4	1374.7(3)	973.1(2)	714.7(2)	
Cs ₂ TiCl ₅ ·H ₂ O	Pnma	4	1427.3(2)	1024.2(5)	735.5(1)	
Rb ₂ TiCl ₅ ·H ₂ O	Pnma	4	1374.8(5)	992.0(3)	707.1(2)	

 Table 1 Unit cell parameters of alkali metal-chloromolybdates(III)

H-A₃MoCl₆* exposures are taken at 550°C

745°C), a compound KMoCl₄ stable up to 200°C. Drobot et al. [16] found only

the 3:1 compound K_3MoCl_6 (*m.p.*=865°C).

X-ray investigations

The results of unit cell determinations are listed in Table 1.

Powder patterns were indexed according to the known structure families; for the intensity calculations the site parameters were taken for:

Na₃MoCl₆ from Na₃CrCl₆ [17]; Rb₃MoCl₆ from Cs₃BiCl₆ [18]; Cs₃MoCl₆ from Cs₃CrCl₆ [2]; the structures of K₃MoCl₆ [19] and of compounds A₃Mo₂Cl₉ [20], [21] were already known. The hydrates A₃MoCl₅·H₂O were indexed analogous to Cs₂TiCl₅·H₂O; its structure has been determined recently in our group [22] by single crystal measurements. Single crystals were obtained by slow evaporation of a solution containing TiCl₃ and CsCl. The preparation of TiCl₃ solutions by electrolytic reduction of TiCl₄/HCl is described in Brauer [7]. Some unpublished results are compiled in an appendix to this paper.

Discussion

As noted in the introduction, the ionic radius of $Mo^{3^+}(69 \text{ pm})$ is somewhat larger than those of the light transition metal ions Ti^{3^+} , V^{3^+} , Cr^{3^+} and Fe^{3^+}

(67–62 pm), but smaller than those of the later lanthanides (89 pm for Er^{3+}). Considering the stoichiometry and the structure of the compounds – A₃MoCl₆ and A₃Mo₂Cl₉ – there is a close analogy with the systems of CrCl₃ and VCl₃ [2]: Both elements only form compounds A₃MCl₆ and A₃M₂Cl₉ with the same structures as found for the Mo-compounds.

The high-temperature modifications of A_3MoCl_6 (*A*=K, Rb, Cs) crystallize with the cubic elpasolithe structure: isolated [MoCl₆]³⁻ octahedra are held together by the A⁺ ions; 2/3 with the CN 12 against chlorine, 1/3 in octahedral holes. The different modifications found at ambient temperature are distorted variants, in which the coordination number of the A⁺ ions is between 9 and 11. In Na₃MoCl₆ another motif exists: here the Na⁺ and Mo³⁺ ions are both occupying octahedral holes.

With Fe³⁺ in tetrahedral coordination, the compounds AFeCl₄ are found. Compounds ATiCl₄ are also described in the literature [23]. Because of the site preference energy of the ligand field theory they are more stable than the octahedrally coordinated iron compounds such as A₃FeCl₆ and A₃Fe₂Cl₉. The closest relation of molybdenum(III) is to the largest transition metal ion Ti³⁺ with *r*=67 pm. This can be seen from the fact that Cs₂MoCl₅·H₂O is isotypic with Cs₂TiCl₅·H₂O (s.g. Pnma) and not with Cs₂CrCl₅·H₂O (s.g. Cmcm). An explanation for the difference is given in [24]. Otherwise, the difference from the systems of the late lanthanides is significant: for instance with Er³⁺ four Cs-compounds are known: Cs₃ErCl₆, Cs₂ErCl₅, Cs₃Er₂Cl₉ and CsEr₂Cl₇ [25]. With sodium also a compound NaErCl₄ exists with CN 6 for the lanthanide ion [26].

We thank Mrs. Astrid Pilz, Univ. Kassel for her help in single crystal investigations. Financial support of the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie is gratefully acknowledged.

Appendix

re refinement parameters for $Cs_2TiCl_5 H_2O$
Cs ₂ TiCl ₅ ·H ₂ O
Enraf Nonius CAD4
graphite
Ω -scans/0.88+0.65 tan Θ
71.073 pm
orthorhombic
Pnma
a=1427.3(2)
b=1024.2(5)
c=735.5(6)
1075.2(1)
4

Calculated density (g/cm^3)	3.144
Absorption coefficient	8.647 mm^{-1}
Absorption correction	empirically
min.; max. transmission	0.48; 1.00
Theta measured from	2.9-24.00
Indexing area	$-16 \le h \le 0; -11 \le k \le 2; -8 \le l \le 8$
Number of reflexions	2131
Symmetry independ refl.	901 [R(int)=0.0231]
R-Value (all data)	R1=0.0314, wR2=0.0686
*DIFABS, N. Wacker and D. S	tuart, Acta. Cryst., A39 (1983) 158.
Symmetry independ refl. R-Value (all data) *DIFABS, N. Wacker and D. S	901 [R(int)=0.0231] R1=0.0314, wR2=0.0686 tuart, Acta. Cryst., A39 (1983) 158.

Atomic positions and equivalent temperature parameters (pm) in $Cs_2TiCl_{5}\cdot$ H_2O

Atom	x/a	y/b	z/c	$U_{\rm cq}$
Ti	0.1097(1)	1/4	0.3176(1)	23(1)
Cl1	0.0069(1)	1/4	0.0591(2)	32(1)
C12	0.2414(1)	1/4	0.1097(2)	27(1)
C13	0.2175(1)	1/4	0.5643(2)	34(1)
C14	0.1012(1)	0.0113(1)	0.3291(2)	32(1)
Ο	-0.0055(3)	1/4	0.4995(7)	41(1)
Cs	0.3552(1)	-0.0011(1)	0.3436(1)	32(1)
Н	-0.0267(39)	0.3162(63)	0.5125(76)	74(23)

(Selected)	Angular/	° and internuclear distan	ices (pm)
O-TiCl1	91.5(2)	Ti–O	212.5(5)
O-Ti-Cl2	180.0(2)	Ti-C11	240.2(2)
OTiCl4	86.54(4)	Ti–Cl2	242.3(2)
Cl1-Ti-Cl2	88.54(6)	Ti-Cl3	237.9(2)
Cl1-Ti-Cl4	89.84(4)	Ti-Cl4	244.95(10)
Cl2-Ti-Cl3	88.83(6)		
Cl2-Ti-Cl4	93.46(4)		
Cl3-Ti-Cl4	90.32(3)		

References

- 1 H. J. Seifert, Thermochim. Acta, 214 (1993) 41.
- 2 M. Prien and H. J. Seifert, J. Thermal Anal., 45 (1995) 349.
- 3 A. V. Storonkin, I. V. Vasilkova, J. I. Kozhina and E. N. Ryabov, Zh. Fiz. Khim., 41 (1967) 1008.

- 4 S. A. Shchukarev, I. L. Perfilova and L. N. Garin, Zh. Neorg. Khim., 11 (1966) 1451.
- 5 R. D. Shannon, Acta Cryst., A23 (1976) 751.
- 6 H. Schäfer, H. G. v. Schnering, J. Tillack, F. Kuhnen, H. Wöhrle and H. Baumann, Z. Anorg. Allg. Chem., 353 (1967) 281.
- 7 G. Brauer, Handb. präp. Anorg. Chem., Bd.3. Enke Verlag 1981.
- 8 W. Geilmann and F. Weibke, Z. Anorg. Allg. Chem., 199 (1931) 347.
- 9 H. Fink, Program to determine X-ray powder patterns, University of Kassel (1984).
- 10 K. Yvon, W. Jeitschko and E. Parthe, J. Appl. Cryst., 7 (1977) 73.
- 11 J. Warczewski and P. M. de Wolff, J. Appl. Cryst., 7 (1974) 585.
- 12 F. Foerster and E. Fricke, Z. Angew. Chem., 36 (1923) 458.
- 13 J. Lewis, R. S. Nyholm and P. W. Smith, J. Chem. Soc., (A) 57 (1969).
- 14 N. K. Kuan, R. A. Sandler, E. N. Ryabov, I. V. Vasil'kova, I. L. Kozhina and E. F. Klyuchnikova, Zh. Neorg. Khim., 17 (1972) 1336.
- 15 E. N. Ryabov, R. A. Sandler, I. I. Kozhina, E. F. Klyuchnikova and L. P. Dorfman, Izv. Tvet. Metallurgija, 16 125.
- 16 D. V. Drobot and E. A. Sapranova, Zh. Neorg. Khim., 18 (1973) 1068.
- 17 G. Friedrich, H. Fink and H. J. Seifert, Z. Anorg. Allg. Chem., 548 (1987) 141.
- 18 F. Benachenhou, G. Mairesse, G. Nowogrocky and D. Thomas, J. Solid State Chem., 65 (1986) 13.
- 19 Z. Amilius, B. van Laar and H. M. Rietveld, Acta Cryst., B25 (1969) 400.
- 20 R. Saillant, R. B. Jackson, W. E. Streib, K. Folting and R. A. D. Wentworth, Inorg. Chem., 10 (1971) 1453.
- 21 I. E. Grey and P. W. Smith, Austr. J. Chem., 24 (1971) 73.
- 22 F. Zülch, Diplomarbeit, University of Kassel (1995).
- 23 E. Chassing, F. Basile and G. Lorthioir, Ann. Chim. [France], 4 (1979) 295.
- 24 M. Prien, G. Koske and H. J. Seifert, Z. Anorg. Allg. Chem., 620 (1994) 1943.
- 25 D. Büchel, J. Krok-Kowalski and H. J. Seifert, Thermochim. Acta, 282/283 (1995) 297,
- 26 M. S. Wickleder and G. Meyer, Z. Anorg. Allg. Chem., 621 (1995) 546.